
Coding Rules Overview 1
ID: 33-BSI | Version: 11 | Date: 5/16/08 2:38:36 PM

Coding Rules Overview
Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2005 Cigital, Inc.

2005-10-03

Coding rules are representations of knowledge, gained from real-world experiences, about potential
vulnerabilities that exist in programming languages like C and C++. As we create and use software with a
given coding environment, we discover and learn about many vulnerabilities that exist in this environment,
how to recognize whether they crop up in our code, and what to do to fix them.

As an individual interested in learning more about Building Security In to software, you may ask yourself
“What are coding rules and why should I care about them?”

Coding rules are representations of knowledge, gained from real-world experiences, about potential
vulnerabilities that exist in programming languages like C and C++. As we create and use software with a
given coding environment, we discover and learn about many vulnerabilities that exist in this environment,
how to recognize whether they crop up in our code, and what to do to fix them.

While developing this expertise certainly brings much higher levels of quality and security to code written
by the experienced practitioner, the reality is that such expertise is in very short supply and this knowledge
is nontrivial to convey. Recognized experts are typically leveraged to help a broader base of less experienced
developers through the practice of security code reviews.

Put into play this way, these rules become a checklist that the practitioner looks for when performing a
security review of a piece of code. An example is the use of the C function call strcpy() that, as it is typically
used, opens a piece of software up to significant danger of exploit through a buffer overflow. A skilled
security reviewer checks for uses of this function and replaces them with a more secure function (e.g.,
making use of the STL) or at least verifies that in each case proper buffer management and bounds checking
occurs.

Even with this kind of expert/mentor approach, there is still far too much code being written for the practice
to scale. Two actions are required to improve the efficiency and effectiveness of this process. First, the
knowledge of these rules needs to be transformed from its implicit state in the minds of experts into a more
explicit form that allows it to be shared. Second, because this kind of work is tedious, boring, and difficult to
perform, automated tools are needed to review source code and apply these rules. Let's face it, experts hate
manually digging through thousands of lines of code looking for these kinds of issues. Automated tools are
able to review code and apply rules at a faster rate, at a higher level of quality, and to larger code bases than
any human could in a purely manual fashion.

The good news is that both of these things are taking place.

Evolution of Coding Rules

History of Rule Coverage
Coding rules in explicit form have evolved rapidly in their coverage of potential vulnerabilities. Before

Bishop and Dilger's 1996 work on race conditions in file access [Bishop 96]2, explicit coding rulesets, if they
existed at all, only existed as checklist documents of ad hoc information authored, managed, and typically
not widely shared by experienced software security practitioners. Bishop and Dilger's tool was one of the
first recognized attempts to capture a ruleset (in this case, a limited set of rules covering potential race
conditions in file accesses using C on UNIX systems) and automate its application through lexical scanning

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)
2. #dsy33-BSI_refs

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html
#dsy33-BSI_refs

Coding Rules Overview 2
ID: 33-BSI | Version: 11 | Date: 5/16/08 2:38:36 PM

of code. For the next four years, a lot of thinking and research was done in the area, but no other tools and
accompanying rulesets emerged to push things forward.

This changed in early 2000 with the release of ITS43, a tool whose ruleset also targeted C/C++ code but
went beyond the single-dimensional approaches of the past to cover a broad range of potential vulnerabilities

in 144 different API functions [Viega 2000]4. This was followed the next year by the release of two more

tools, FlawFinder5 and RATS6. FlawFinder, from David Wheeler, is a C/C++ scanning tool with a somewhat
larger set of rules than ITS4. RATS, authored by John Viega, one of the original authors of ITS4, not only
offered a broader ruleset covering 310 C/C++ API functions but also offered new rulesets for the Perl, PHP,
Python, and OpenSSL domains. In parallel with this public development, Cigital, the company that originally
created ITS4, released SourceScope, a follow-on to ITS4 with a new standard of coverage—653 C/C++ API
functions.

Today there are around a half dozen first-tier options available in the static code analysis tools space. These
tools include, but are not limited to, the following:

• Coverity Prevent7

• Fortify Source Code Analysis8

• Grammatech CodeSonar9

• Klocwork K710

• Ounce Labs Prexis/Engine11

• Secure Software CodeAssure Workbench12

Each of these tools offers a comprehensive and growing ruleset varying in both size and area of focus.
As you investigate and evaluate which tool is most appropriate for your needs, the coverage of the
accompanying ruleset should be one of your primary factors of comparison.

This catalog contains full coverage of the C/C++ rulesets from ITS4, RATS, and SourceScope and is
intended to represent the basic, foundational set of security rules for C/C++ development. Though there
are currently tools available with rulesets much more comprehensive than this catalog, we consider this the
minimum standard for any modern tool scanning C/C++ code for security vulnerabilities.

3. http://www.cigital.com/its4/
4. #dsy33-BSI_refs
5. http://www.dwheeler.com/flawfinder/
6. https://securesoftware.custhelp.com/cgi-bin/securesoftware.cfg/php/enduser/doc_serve.php?2=Security

http://www.cigital.com/its4/
#dsy33-BSI_refs
http://www.dwheeler.com/flawfinder/
https://securesoftware.custhelp.com/cgi-bin/securesoftware.cfg/php/enduser/doc_serve.php?2=Security
http://www.coverity.com/products/products_security.html
http://www.fortifysoftware.com/products/sca/
http://www.grammatech.com/products/codesonar/overview.html
http://www.klocwork.com/products/klocworkk7.asp
http://www.ouncelabs.com/prexis_engine.html
http://www.securesoftware.com/products/source.html

Coding Rules Overview 3
ID: 33-BSI | Version: 11 | Date: 5/16/08 2:38:36 PM

Evolution of Schema & Taxonomy
Just as the vulnerability coverage of rules has evolved over time, so have the organizational taxonomies used
to manage them and the complexity of the schemas used to store them. First, let us clearly distinguish that
in this discussion we are talking about coding rules and not just the vulnerabilities that they describe and
expose. For many decades there have been scores of efforts to classify and categorize vulnerabilities. We

leave that broader discussion for elsewhere. 113 Here we discuss specifically the context of coding rules and
how their organization and descriptions have changed over time.

When coding rules were first explicitly described, they were simple lists of vulnerable APIs. Soon after
collections of these APIs began to take form, people began to categorize them according to their simple
vulnerability types, such as buffer overflow, time of check, time of use (TOCTOU), etcetera. These initial
categorizations helped to identify achievable opportunities of focus for the first automated tools (e.g., Bishop
and Dilger's race condition scanner).

Once more advanced tools entered the arena, we began to see information added to the rules beyond the
simple API and category. For reporting purposes, including information such as a severity and a short
description became necessary. These descriptions often included a recommended solution but were limited to

13. #dsy33-BSI_notes

#dsy33-BSI_notes

Coding Rules Overview 4
ID: 33-BSI | Version: 11 | Date: 5/16/08 2:38:36 PM

only one or two lines of text all told. At this stage in the evolution of automated tools (during the era of ITS4,
RATS, and FlawFinder), the value and novelty of the tools sprang from their ability to quickly point out
potential issues because they had any sort of list at all. The user experience and depth of knowledge provided
about various issues were both of lesser priority than the very existence of a tool.

This changed with the emergence of more capable and comprehensive tools like SourceScope. SourceScope
pushed things forward for taxonomies and schemata in two ways. First, SourceScope was one of the first
tools to move from considering every individual API a rule to aggregating sets of APIs that shared a
common vulnerability and common solution in a smaller number of rules. A rule thus began to describe in
a more useful way a potential vulnerability and its solution rather than simply unnecessary repetition across
the numerous ways a vulnerability could occur. The underlying tool would still scan for all of the APIs, but
would report a common set of information for all APIs covered by the same rule. Second, simplification
and aggregation made it easier for SourceScope to use a more comprehensive schema and thus give the
developer a much greater understanding of the potential vulnerability and how to mitigate or avoid it.
This schema included more detailed descriptions and solutions, a description of the motivation of a likely
attacker, estimated accuracy and severity, vulnerability category, references, and so on. A SourceScope-like
comprehensive schema is now being pursued by the current players in the automated tool arena.

There are two main challenges remaining in the area of coding rules taxonomies and schemata. The first
is that most rule schemata in use today are still too simple to convey the full context of a vulnerability to a
degree that a developer can understand the issue that the tool is flagging and make wise choices in how to
fix it. Simply pointing to a potential issue and saying “hey, go look over there” is inadequate for developers
without a firm grounding in security. Unfortunately, those schemata that are becoming more comprehensive
are typically proprietary and at odds with each other. We are working toward a common standard schema
to describe software security coding rules. The second challenge is that rule taxonomies have started to
grow out of control. They have moved from being bottom-up, well-defined structures to overly complex,
theoretical exercises in what could possibly happen. This leads to unnecessary contention between models
that disagree on the nature of the theoretical, as well as sparsely populated and less useful taxonomies.
For this catalog, we decided to follow a strictly bottom-up philosophy in defining and populating our

taxonomies. 214

The table below presents the schema used for this catalog. It was derived from studying existing rule
schemas and by discussing with experts in the field what sorts of information would make the rules more
useful and meaningful.

Field Name Field Description Field Format Selection Choices Multiplicity

Title Short rule
descriptor

text 1

Attack Category What typical types
of attacks does this
rule help expose
and/or mitigate?

selection Denial of Service
Encryption Assault
Environment
Manipulation
File Manipulation
Identity Spoofing
Impersonation
Malicious Input
Memory Scanning
Path Spoofing or
Confusion Problem
Privilege
Exploitation
Resource Injection

*

14. #dsy33-BSI_notes

#dsy33-BSI_notes

Coding Rules Overview 5
ID: 33-BSI | Version: 11 | Date: 5/16/08 2:38:36 PM

Vulnerability
Category

What types of
vulnerabilities are
exposed by this
rule?

selection Access Control
Buffer Management
Buffer Overflow
Compiler
Optimization
Cryptography
Format String
Indeterminate File/
Path
Information
Leakage
Input Source (not
really attack)
Integer Overflow
Multibyte Character
No Null
Termination
Privilege Escalation
Problem
Process
Management
Race Condition
Random Number
Problems
Temporary File
Creation Problem
Threading and
Synchronization
Problem
TOCTOU (time of
check, time of use)
Unchecked Return
Value
Unconditional
Unhandled
Exception
URL/Command
Parsing

*

Sofware Context In what area
of software
implementation
does the rule have
likely impact?

set *

• Context Software
implementation
context of impact
for this rule

selection Authorization
Critical Sections
Cryptography
Debug API
ISAPI
File Creation
File Management
Filename
Management

0..1

Coding Rules Overview 6
ID: 33-BSI | Version: 11 | Date: 5/16/08 2:38:36 PM

File Path
Management
File I/O
Inheritance
Internet
Logging
Memory
Management
National Language
Support
Networking
Process
Management
Security
Shell Functions
String Formatting
String Parsing
String Conversion
MACROS
String Management
Temporary File
Management
Threads and
Processes

• Other Context New software
development
contexts that are not
in the Context list

text 0..1

Location Header file, class,
or module where
this rule's APIs live

text *

Description Full explanation
of the rule, things
to search for, and
potentially context
of what can reduce
the level of false
positive hits on this
rule

text 1

APIs Which APIs is this
rule applicable to?

set *

• Function Name API name text 1

• Comments Comments
describing any
special conditions
of how this rule
applies to this API

text 1

Method of Attack Context/motivation
of how this rule
is important to

text 1

Coding Rules Overview 7
ID: 33-BSI | Version: 11 | Date: 5/16/08 2:38:36 PM

an attacker. How
would the attacker
leverage this
weakness to exploit
the software?

Exception Criteria Under what
conditions is it
okay to ignore the
triggering of this
rule?

text 1

Solution What needs to
be done to fix
the code to avoid
this rule and
therefore improve
the security of the
code? What should
be changed?

set 1..*

• Solution
Applicability

The Solution
Applicability is a
natural language
explanation of when
it is appropriate
to consider this
solution.

text 1

• Solution
Description

Description of the
proposed actions
or steps for this
solution

text 1

• Solution Efficacy The Solution
Efficacy is a
natural language
explanation of the
efficacy of this
particular solution

text 1

Signature Details What is the specific
code signature to
look for that will
indicate that this
rule is relevant
for the code being
analyzed?

text 1

Code Examples
Negative

Specific code
examples that
exhibit this rule in
failure mode.
These examples are
meant to simply
illustrate the issue
and are not intended

text *

Coding Rules Overview 8
ID: 33-BSI | Version: 11 | Date: 5/16/08 2:38:36 PM

to be compilable or
usable in any sort
of cut-and-paste
fashion into any
code. Every effort
has been made
to provide good
quality examples,
but their simple
nature relies on
human review for
quality assurance. If
you find any issues
with the examples
please let us know.

Code Examples
Positive

Specific code
examples that
exhibit this rule in
solution mode
These examples are
meant to simply
illustrate the issue
and are not intended
to be compilable or
usable in any sort
of cut-and-paste
fashion into any
code. Every effort
has been made
to provide good
quality examples,
but their simple
nature relies on
human review for
quality assurance. If
you find any issues
with the examples
please let us know.

text *

Source References Any supporting
bibliography entries
(sources) for this
rule

text *

Recommended
Resources

Recommended
resources for better
understanding the
context, nature, and
implications of this
rule

set *

• Resource Name Name of the
resource being
recommended

text 1

Coding Rules Overview 9
ID: 33-BSI | Version: 11 | Date: 5/16/08 2:38:36 PM

• Resource Link URL link to
the resource (if
applicable)

text 1

Operating System For which OS is
this rule relevant?

set 1

• OS Standard OS from
list

selection Any
UNIX (All)
UNIX
Windows (All)
Windows
Windows 98
Windows Me
Windows 2000
Windows XP Home
Windows XP Pro
Windows 2003
Windows Ce
Win32
Palm OS
Solaris
HP-UX
Linux
AIX
IRIX
FreeBSD
OpenBSD
NetBSD
MacOS X
MacOS 9
Other

*

• Other OS OS not in list text *

Language For which
programming
language(s) is this
rule relevant? (e.g.,
Java, C, C++, C#,
VB)

text *

The catalog published here takes the approach pioneered by SourceScope in aggregating APIs into common
rules. This aggregation is typically defined by a commonality of both the underlying vulnerability as well
as a somewhat specific solution. Because of the number of diverse APIs covered, the complexity of the
schema, and the subjectivity of the aggregation criteria, some readers may feel that there is inconsistency
in the aggregation applied in the catalog. We welcome any suggestions for improving this and any other
dimension of the catalog.

As you can see from the schema, we have defined three primary dimensions of categorization for the rules:
Attack Category, Vulnerability Category, and Software Context. Their current state is a direct reflection
of the rules actually in the catalog. Of these, the most recognizable will be Vulnerability Category. There
are currently many versions of this kind of taxonomy being put forward in the industry, including the
one in the book The 19 Deadly Sins of Software Security [Howard 05] and the one in Software Security:
Building Security In by Gary McGraw (to be published by Addison-Wesley in February 2006). It is essential
that the community works together toward a standard vulnerability category taxonomy to enable greater

Coding Rules Overview 10
ID: 33-BSI | Version: 11 | Date: 5/16/08 2:38:36 PM

consistency of discussion as well as portability of categorized knowledge such as coding rules. We welcome
the emergence of a standard.

One result of the categorization of the rules is the initial creation of some MetaRules defining a higher level,
more abstract rule for some typical groupings of rules in the catalog. These MetaRules provide a developer
with a good overview of various types of vulnerabilities, their solutions, and which particular individual
APIs are susceptible to them. This effort has only begun and will continue with the evolution of the catalog
as new MetaRules are created and others are split or merged as needed. Eventually, each MetaRule will also
be bidirectionally linked with its relevant individual rules.

At the top and bottom of this Coding Rules Catalog introduction, you are provided with the ability to search
or browse the catalog in several ways, including by the various taxonometric categories.

Objectives of the Coding Rules Catalog
This catalog of coding rules is presented here as part of the overall Building Security In knowledge content
with several objectives in mind.

• To act as measuring stick for evaluating software security code analysis tools.
There are numerous choices of both open-source and commercial tools available today for software
security code analysis. These tools include, but are not limited to:

• Coverity Prevent15

• Fortify Source Code Analysis16

• Grammatech CodeSonar17

• Klocwork K718

• Ounce Labs Prexis/Engine19

• Secure Software CodeAssure Workbench20

• These tools are the best way to apply the coding rules in practice. Recognizing that all situations are not
equal and that there is not any one tool that is right for everyone, this catalog is presented to give you
an objective reference of measure to compare available tools based on the most important dimension of

their capability—the rulesets that they check for. Click here21 to learn more about Code Analysis Tools.

• We understand that there are commercial tools currently available that offer rulesets more
comprehensive than the one making up this catalog. This catalog is intended to represent the minimum
level of coverage that should be available in a modern C/C++ language security code analysis tool. If
your tool does not support this basic ruleset, you should consider an alternative.

• Currently, the catalog will be useful only for those comparing tools that review C/C++ code. In the
future, the catalog will be expanded to cover other languages. For more information on selecting

software security code analysis tools, please see the Code Analysis Tools22 section of the Building
Security In website.

• To act as an instructive reference for developers so they can understand vulnerabilities that
current tools flag.
Even among the most modern tools with comprehensive rulesets and advanced analysis technologies,
there is often little information offered to the user about any particular issue being flagged. There is a
need for more information to help put the flagged issue in context and to help the user decide on the
most effective mitigating action to take. This would be a mitigation that not only clears the flagging
by the tool but also resolves the underlying security vulnerability in question. This catalog is intended
to act as such a reference for the rules that it contains. It also provides an excellent example to tool
developers of the kinds of information that should be integrated into the tools in the future.

• To act as an instructive reference for developers so they can learn about potential vulnerabilities
and how to avoid them up front before a tool flags them.
In the spirit of Building Security In , the catalog is also intended as a resource of knowledge for
developers to explore proactively as a learning exercise to better understand the vulnerabilities that exist

http://www.coverity.com/products/products_security.html
http://www.fortifysoftware.com/products/sca/
http://www.grammatech.com/products/codesonar/overview.html
http://www.klocwork.com/products/klocworkk7.asp
http://www.ouncelabs.com/prexis_engine.html
http://www.securesoftware.com/products/source.html
https://buildsecurityin.preview.us-cert.gov/portal/article/tools/Code_Analysis
https://buildsecurityin.preview.us-cert.gov/portal/article/tools/Code_Analysis

Coding Rules Overview 11
ID: 33-BSI | Version: 11 | Date: 5/16/08 2:38:36 PM

in their source language so that they can avoid them in the first place. As we move left in the life cycle
in mitigating the risk of potential vulnerabilities in our code, we reduce our overall effort and greatly
reduce the impact this risk has on our software.

• To act as a catalyst to spur conversation and collaboration among the software security
community around coding rules.
This catalog is a continuously evolving and growing body of knowledge that not only absorbs the
knowledge and input of the practitioners in the community but also challenges them to expand their
own understanding and expectations around the topic of security coding rules. Healthy dynamic growth
will not be sustained with only the participation of the group of experts who compiled this initial
version. It will require the deep involvement of the users of this website. Please offer your experience
and insight. As we go forward here, keep your eyes open for more collaborative capabilities to be added
to the website to enable your more dynamic involvement.

Potential Next Steps for the Coding Rules Catalog
Recognizing that this catalog is intended to be a continuously evolving and growing body of knowledge, here
are a few next steps under consideration (and in some cases in development) for the catalog in the future:

• referential linking between related rules and other BSI website content

• ongoing enhancement of current rules in the catalog, such as refinements to the current descriptions and
solutions, new solutions added, new code examples, etc.

• new rules in the C/C++ language base

• # new rules for other languages such as Java, .NET, PHP, shell, AJAX, etc.

• potential extensions to the schema, including updating current rules. These extensions could take the
form of compilable code examples to use as test suites for tools, normalized signature definition using a
standard expression language, extensions required for new types of rules like data flow, etc.

Acknowledgements and Disclaimers

Acknowledgements
Coding Rule Pioneers : Matt Bishop, Michael Dilger, John Viega, Gary McGraw, and David Wheeler. The
Cigital rule building team included Frank Charron, Mike Debnam, John Steven, J. Richard Mills, Viren
Shah, and Chris Ren.

This list is by no means all inclusive, but it was the work of these gentlemen that inspired this catalog.

Internal team of authors, reviewers & contributors : Sean Barnum, Paco Hope, Will Kruse, Michael Gegick,
Robert Wentworth, Joseph Wisniewski, Amit Sethi, Fabio Arciniegas, Gary McGraw

External expert reviewers : Fred Schneider (Cornell University), Brian Chess (Fortify), Steve Lipner
(Microsoft), Michael Howard (Microsoft), Shawn Hernan (Microsoft), John Viega (Secure Software).

Disclaimer
This catalog of rules is not a completely original creation, but rather an original presentation, aggregation
and collection of knowledge from hundreds of people and sources. Its value lies not in its originality of
content but rather in the novelty of presenting such a diverse set of knowledge together in one place and in
a unified, searchable context. The authors of this catalog have done their best to cite and quote other work
that was used in the aggregation effort; however, with such a large set of content and diversity of sources, it
is possible that we inadvertently missed something. If you notice any oversights please let us know and we
will fix them.

Coding Rules Overview 12
ID: 33-BSI | Version: 11 | Date: 5/16/08 2:38:36 PM

Footnotes
[1] For a good start, see Ivan Krusl's thesis A Taxonomy of Security Faults in the Unix Operating System

(1995) from CERIAS (then called COAST) http://homes.cerias.purdue.edu/~spaf/students.html23.

[2] Because of this, an experienced reader may quickly notice some obvious categories appear to be missing
compared to other modern taxonomies. This is purely a result of the rules in this catalog and not a statement
of what the complete version could or should be.

References
[Bishop 96] Bishop, Matt & Dilger, Mike. “Checking for Race Conditions in File Accesses.” Computing
Systems 9, 2 (1996): 131–152.

[Viega 2000] Viega, John; Bloch, J. T.; Kohno, Tadayoshi; & McGraw, Gary. "ITS4: A Static Vulnerability
Scanner for C and C++ Code." Proceedings of Annual Computer Security Applications Conference. New
Orleans, LA, December 11-15, 2000. http://www.acsac.org/.

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

23. http://homes.cerias.purdue.edu/%7Espaf/students.html
1. mailto:copyright@cigital.com

http://homes.cerias.purdue.edu/%7Espaf/students.html
mailto:copyright@cigital.com

